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Figure 1: Integer ray tracing. A wide variety of specialized processors do not provide hardware floating-point units and rely instead on
integer-only computational pipelines. We explore the problem of ray tracing on these platforms and describe a complete, integer-only ray
tracing pipeline, including traversal, intersection, and shading.

Abstract

Despite nearly universal support for the IEEE 754 floating-point
standard on modern general-purpose processors, a wide variety
of more specialized processors do not provide hardware floating-
point units and rely instead on integer-only pipelines. Ray trac-
ing on these platforms thus requires an integer rendering process.
Toward this end, we clarify the details of an existing fixed-point
ray/triangle intersection method, provide an annotated implemen-
tation of that method in C++, introduce two refinements that lead to
greater flexibility and improved accuracy, and highlight the issues
necessary to implement common material models in an integer-only
context. Finally, we provide the source code for a template-based
integer/floating-point ray tracer to serve as a testbed for additional
experimentation with integer ray tracing methods.

1 Introduction

Whereas hardware support for the IEEE 754 floating-point stan-
dard [IEEE 2008] is common among general-purpose CPUs,
many processors—such as low-power embedded processors, high-
performance stream processors, specialized digital signal proces-
sors, and so forth—do not provide hardware support for IEEE 754.
Leveraging these platforms for ray tracing thus requires an integer-
only rendering process. Moreover, eliminating the need for
floating-point units in the design of a custom ray tracing architec-
ture can significantly reduce power and area requirements, but still
deliver performance competitive with processors that provide full
hardware support for the standard. In this context, we present a
complete integer ray tracing pipeline targeting computational en-
vironments that lack hardware support for the IEEE 754 floating-
point standard.

Although it is tempting to dismiss the problem of integer ray tracing
as a matter of abstraction—that is, one solved simply by designing
an appropriate fixed-point data type for use in place of standard
floating-point types—our experience shows that a correct, efficient,
and accurate solution involves a number of subtle details that com-
plicate this view.

Fixed-point ray/triangle intersection. Recently,
Hanika et al. [Hanika and Keller 2007; Hanika 2007] have
explored fixed-point ray/triangle intersection, demonstrating
that this core operation can be implemented without support for
floating-point types. The method is ideal for a direct hardware

implementation because eliminating floating-point hardware units
reduces the power and area requirements of the architecture. We
leverage Hanika’s method in the integer-only ray tracing pipeline
described here.

Contributions. To help others interested in the problem of inte-
ger ray tracing, we:

• highlight the caveats that arise in the implementation of an in-
teger ray tracer, paying particular attention to the details nec-
essary to implement the full rendering pipeline;

• describe a method of computing Hanika’s triangle edge shift
adaptively, avoiding hard-coded values to accommodate a
wider range of scenes;

• carefully analyze ray/bounding box intersection to reveal un-
used bits and improve accuracy;

• clarify the details of Hanika’s fixed-point ray/triangle inter-
section method with an annotated implementation in the C++
programming language; and

• outline the implementation of common material models in an
integer-only context.

We also provide the source code for a template-based
integer/floating-point renderer that can serve as a testbed for
further enhancements and additional experimentation with integer
ray tracing techniques. The renderer implements the complete
ray tracing pipeline, including traversal, intersection, and shading.
All of the components have been carefully designed to execute
in computational environments that lack hardware support for
IEEE 754 floating-point types.

2 Implementation

Integer ray tracing necessitates careful attention to details typically
handled by IEEE 754 floating-point implementations.

2.1 Numeric spaces

The positions, vectors, and colors used throughout the rendering
process are represented in distinct numerical domains that balance
range and precision with respect to the values encoded in that space.

We follow the outline provided by Hanika: each component of a
position in three-dimensional space is represented using a 29-bit



scene # of bits
element domain [radix] range precision

Vertices Integer 29 [0] [0, 229] 1

Vectors Fixed-point 32 [31] [−1, 1) 2−31

Colors Fixed-point 32 [16] [0, 216] 2−16

Table 1: Numeric spaces. The key values used in ray tracing are
represented in distinct numeric spaces. The interaction between
elements expressed in different domains requires careful attention
in order to maintain a high degree of precision.

unsigned integer, whereas vector components are encoded in signed
32-bit integers with the radix point to the right of bit 31. We also
implement integer-only shading, so RGB color components are rep-
resented as unsigned 32-bit integers with the radix point to the right
of bit 16. The key characteristics of these domains are summarized
in Table 1.

These spaces are designed to balance the range/precision tradeoffs
inherent to an integral approximation of real numbers, tradeoffs that
are typically managed by the IEEE 754 implementation. In that
representation, precision is traded for magnitude, and so IEEE 754
suffers from an unequal distribution of values along the real number
line. In contrast, fixed-point representations are evenly distributed;
thus, if the precision necessary to accurately represent a value is
available near the origin, that precision is available anywhere in the
space—fixed-point precision is invariant under translation.

Positions. Positions in three-dimensional space, including ge-
ometry vertices, bounding box extents, ray origins, camera and light
source positions, and t-values in the ray parameter space are repre-
sented in a purely integer domain. As shown by Hanika, repre-
senting the length of the maximum displacement in this space with
an unsigned 32-bit integer requires limiting the range of values to
[0, 229]. Once appropriate shift and scale factors have been deter-
mined, scene elements represented in this space are mapped to the
resulting integer grid, effectively discretizing the input domain.

Vectors. Vector quantities are expressed in a fixed-point repre-
sentation with the radix point to the right of bit 31; each component
of a vector quantity is thus in the range [−1, 1) with 31 bits of pre-
cision:

0.000000...00 → 0
0.000000...01 → 0 + 2−31

· · ·

0.111111...11 → 0 +
∑

31

i=1
2−i

1.000000...00 → −1
1.000000...01 → −1 + 2−31

· · ·

1.111111...11 → −1 +
∑

31

i=1
2−i

In this domain, range is traded for precision; however, all vector
components can be moved into the representable range by carefully
managing values as they are manipulated throughout the rendering
pipeline.

Colors. In addition to these vertex and vector spaces, we repre-
sent RGB color values as unsigned 32-bit integers in a fixed-point
space with the radix point to the right of bit 16. In our experience,
this representation captures color components in the range [0, 1]
reasonably well, while still permitting intensities greater than one
for scenes utilizing physically accurate measures of light intensity.

Although mathematical operations with fixed-point values are well-
defined, maintaining the highest degree of precision requires careful

typedef struct

{

int np; // Two shorter components of normal vector,

int nq; // each scaled by Nr in fixed-point space

int r : 2; // Index of longest component of normal

int pp : 30; // p-component of v0 in vertex space

int pq; // q-component of v0 in vertex space

int d; // Distance to origin along scaled normal

// in vertex space

union

{

// Unbiased edge components in floating-point space

struct { float e1pf, e1qf, e2pf, e2qf; };

// Biased edge components in fixed-point space

struct { int e1pi, e1qi, e2pi, e2qi; };

};

} HanikaTriangle;

Figure 2: Triangle representation. This data structure is used to
convert a floating-point triangle to an integer representation.

attention to the use of such operators. In addition, the interaction
between computational elements expressed in the purely integer do-
main and those in each of the fixed-point representations complicate
the programmer’s ability to use the latter as a first class data type
blindly throughout the rendering process.

2.2 Scene discretization

In order to maintain compatibility with preexisting scenes, we
implement a conversion process mapping floating-point scene el-
ements to their integral counterparts. All positions in three-
dimensional space are discretized by shifting vertices to the positive
octant and by scaling according to a scene-dependent factor that
maps the maximum component of the scene bounds in the floating-
point domain to 229 in the integer domain.

Triangle representation. Hanika’s fixed-point ray/triangle in-
tersection utilizes a refactored form of Wald’s projection
method [Wald 2004]. Triangles must be converted from the
floating-point representation to the integral form prior to ray trac-
ing. Figure 2 shows the intermediate data structure used during the
triangle conversion process; we follow Hanika’s derivation of these
values.

Note that, during discretization, some triangles will be degenerate,
exhibiting either zero-length edges or zero area. We apply two
simple tests to detect and remove these triangles from the scene
database during discretization, typically with little effect on the re-
sulting image quality.

However, before moving edge components to the fixed-point do-
main, the values are biased according to an edge shift designed to
reduce discretization artifacts. In particular, Hanika’s analysis of
triangle edge statistics across a number of test scenes shows that
clamping values to the range (−2−E , 2−E) before discretization
reduces the artifacts. According to this analysis, the edge shift
E = 10 suffices to render the scenes tested. In our experience,
however, discretization errors are visible with E = 10 for a dif-
ferent collection of scenes (see Section 3). In fact, these scenes
require a much wider range (E ∈ [3, 12]), demonstrating that a sin-
gle, hard-coded value may hamper the correct rendering of some
scenes.

Refinement: scene-dependent edge shift. To manage this is-
sue, we instead determine the edge shift adaptively during conver-
sion. In particular, we track the maximum ratio of triangle edge



components to the maximum component of the face normal, Nr ,
across all triangles during the discretization process. This value is
then used to compute the scene-dependent edge shift and bias:

0 ///////////////////////////////////////

1 // Compute scene-dependent edge shift

2

3 int E = int(-ceilf(logf(max)/logf(2.f)));

4 float bias = powf(2.f, static_cast<float>(E));

The edges of each partially-converted triangle are then scaled ac-
cordingly:

0 ///////////////////////////////////

1 // Bias edges of current triangle

2

3 e1pi = flt2fxd(e1pf*bias);

4 e2pi = flt2fxd(e2pf*bias);

5 e1qi = flt2fxd(e1qf*bias);

6 e2qi = flt2fxd(e2qf*bias);

The biased edge components are now in the range [−1, 1], which
very nearly maps directly to the 31-bit fixed-point domain. How-
ever, rather than risk overflow for edge lengths equal to one (a com-
mon scenario in our experience), we scale all edges to the range
(−1, 1) during the fixed-point conversion (lines 3-6). Doing so in-
troduces some additional error, but this error is bounded by the edge
length times 2−31 in the floating-point domain.

Finally, the intermediate data can be copied to an integer-only data
structure for use during rendering, complete with material identi-
fiers and any other necessary information.

2.3 BVH Traversal

Ray/bounding box intersection for BVH traversal requires up to six
division operations, which can become quite expensive, particularly
in integer arithmetic. In floating-point arithmetic, a faster alterna-
tive instead multiplies by a reciprocal direction vector,

inv = (
1

dx

,
1

dy

,
1

dz

)

stored with each ray [Williams et al. 2005]. This method leads to
significant performance improvements, and the storage cost of an
additional vector per ray is amortized across the large number of
bounding box intersections performed with each ray.

Fixed-point reciprocal directions. However, calculating a re-
ciprocal direction in the fixed-point domain is not as straightfor-
ward as the floating-point equivalent. Precision suffers with the
naive approach in which one is simply converted to its fixed-point
representation and divided by each component.

In particular, observe that for any unit length vector, at least one
component must be greater than or equal to 1

√

3
= 0.5774. When

the corresponding component of the reciprocal direction is com-
puted, the result will always evaluate to ±1 unit due to integer divi-
sion: in fact, any component greater than 1

2
will produce the same

reciprocal value, and each unit length ray direction will contain at
least one such component.

To overcome this issue, Hanika uses a 64-bit representation of the
reciprocal direction and incorporates an additional left shift in the
numerator, according to a parameter C, to effectively divide a value
greater than one by the ray direction:

0 /////////////////////////////////

1 // Compute reciprocal direction

2

3 dir[0] = (dir[0] == 0 ? 1 : dir[0]);

4 dir[1] = (dir[1] == 0 ? 1 : dir[1]);

5 dir[2] = (dir[2] == 0 ? 1 : dir[2]);

6

7 sign[0] = (dir[0] < 0);

8 sign[1] = (dir[1] < 0);

9 sign[2] = (dir[2] < 0);

10

11 int64 n = int64(1) << (31 + C);

12

13 inv[0] = (dir[0] ? n/dir[0] : (-2*sign[0] + 1)*n);

14 inv[1] = (dir[1] ? n/dir[1] : (-2*sign[1] + 1)*n);

15 inv[2] = (dir[2] ? n/dir[2] : (-2*sign[2] + 1)*n);

Here, if a component of the ray direction is zero, the corresponding
value in the reciprocal is initialized to one with the appropriate sign
(lines 13-15).

Note that artificially shifting the numerator in the reciprocal direc-
tion calculation (line 11) requires an equal and opposite shift later to
yield correct results. In particular, the Williams-style ray/bounding
box intersection now proceeds as follows:

0 /////////////////////////////////////////////////

1 // Williams-style ray/bounding box intersection

2

3 int64 tminX = (int64(bounds[ sign[0]][0] - org[0])

4 >> C)*inv[0];

5 int64 tmaxY = (int64(bounds[1-sign[1]][1] - org[1])

6 >> C)*inv[1];

7 if (tminX > tmaxY)

8 return false;

9

10 int64 tmaxX = (int64(bounds[1-sign[0]][0] - org[0])

11 >> C)*inv[0];

12 int64 tminY = (int64(bounds[ sign[1]][1] - org[1])

13 >> C)*inv[1];

14 if (tmaxX < tminY)

15 return false;

16

17 int64 tmin = (tminX > tminY ? tminX : tminY);

18 int64 tmaxZ = (int64(bounds[1-sign[2]][2] - org[2])

19 >> C)*inv[2];

20 if (tmin > tmaxZ)

21 return false;

22

23 int64 tmax = (tmaxX < tmaxY ? tmaxX : tmaxY);

24 int64 tminZ = (int64(bounds[ sign[2]][2] - org[2])

25 >> C)*inv[2];

26 if (tmax < tminZ)

27 return false;

28

29 tmin = (tmin > tminZ ? tmin : tminZ);

30 tmax = (tmax < tmaxZ ? tmax : tmaxZ);

31 if (tmin <= tmax)

32 {

33 if (tmin > INT_MAX || tmin < -INT_MAX)

34 return false;

35

36 t = int(tmin);

37 return true;

38 }

39

40 return false;

Note that the ray may intersect the plane of a box’s side beyond
the bounds of the scene, so in the integer domain, the resulting t-
value may require 64 bits to encode correctly; promoting values to
a 64-bit representation accounts for this subtlety (lines 3-6, 10-13,
18-19, and 24-25). The 64-bit result is first checked against the
valid in-bounds interval (lines 33-34) and is then converted back to
32 bits before reporting a valid intersection (lines 36-37).

An obvious tradeoff exists in this intersection calculation: for each
bit of precision given to the reciprocal direction, a bit of precision is



removed from the difference between the bounds and the ray origin
(for example, lines 7-8). If the value of C is too low, insufficient
precision exists to adequately represent the reciprocal direction and
inaccuracies result. On the other hand, if the value is too high, the
difference between the bound and the origin becomes inaccurate
and bounding boxes are intersected erroneously. A balance must be
struck between these two extremes in order to achieve acceptable
results. In our experience, C = 12 balances the tradeoffs well:
although inaccuracies may still arise, they are greatly reduced com-
pared to the naive computation of the reciprocal direction.

Refinement: improving accuracy. Close inspection of
ray/bounding box intersection reveals a simple improvement
yielding greater accuracy. Consider the basic operation:

((bound - origin) >> C) * reciprocal

Here, both bound and origin are positions in the purely integer
domain and are thus represented in 29 bits. The difference, how-
ever, may be negative, so 30 bits are actually required to represent
this value correctly. The quantity is then shifted right by C, so the
number of bits used by this component is actually (30 − C).

Observe that the reciprocal direction is a vector in the fixed-point
domain that has been shifted left by C bits. After the multiplication,
a total of (30 − C) + (32 + C) = 62 bits are necessary to encode
the result, leaving 2 bits in the 64-bit representation unused.

Further unused bits can be identified if we recognize that compo-
nents of the reciprocal direction will very rarely require all (32+C)
bits; fewer bits will be required unless the component of the ray di-
rection is (very nearly) equal to ±1 unit. Therefore, by guarantee-
ing that the direction vector used in the reciprocal calculation has a
magnitude greater than or equal to 2 = 21, we can recover another
unused bit. We can continue this process to recover even more un-
used bits: for example, if we know that the magnitude is greater
than 4 = 22, we can recover two bits; greater than 8 = 23, three
bits, and so forth.

To ensure the necessary constraints, we modify the reciprocal di-
rection calculation to recover the desired number of bits: if the
magnitude is less than the chosen value (16 = 24 in our case),
the direction is temporarily scaled to the proper signed magnitude:

0 ///////////////////////////////////////////

1 // Compute reciprocal direction (refined)

<lines 2-12 omitted>

13 inv[0] = (abs(dir[0]) >= (1 << 4) ? n/dir[0] :

14 (-2*s[0] + 1)*n)) >> 4);

15 inv[1] = (abs(dir[1]) >= (1 << 4) ? n/dir[1] :

16 (-2*s[1] + 1)*n)) >> 4);

15 inv[2] = (abs(dir[2]) >= (1 << 4) ? n/dir[2] :

17 (-2*s[2] + 1)*n)) >> 4);

When these unused bits are combined with those discovered above,
we recover a total of six unused bits that are used to improve the
accuracy of the calculations: instead of shifting by C, values are
shifted by a parameter D, the difference between C and the num-
ber of unused bits, lending additional precision to the result and
reducing the number of visible artifacts relative to a floating-point
implementation. We have empirically determined that C = 15 and
D = 9 is optimal with respect to the artifacts visible in our exam-
ples.

This optimization increases accuracy but imposes a slight perfor-
mance penalty: the t-value is effectively shifted left by C −D bits.
If the ray encounters a valid intersection, the t-value must first be
shifted right by this difference. In our experience, the extra shift

operation required with every successful bounding box intersection
degrades performance by less than 2%.

2.4 Ray/triangle intersection

As noted, Hanika utilizes a refactored form of Wald’s projection
method designed specifically for integer ray tracing. Here, we an-
notate a C++ implementation of Hanika’s method to highlight the
caveats imposed by fixed-point arithmetic.

To maintain maximum precision and avoid overflow, the origin and
direction of the ray are temporarily promoted to 64-bit values at the
beginning of the intersection routine. We also determine indices of
the p- and q-axes for the given triangle using a simple mod-3 lookup
table:

0 //////////////////////////////

1 // Promote values to 64 bits

2

3 const Point& org = ray.org();

4 const int64 origin[3] = { org[0], org[1], org[2] };

5

6 const Vector& dir = ray.dir();

7 const int64 omega[3] = { dir[0], dir[1], dir[2] };

8

9 const uint p = mod3[r+1];

10 const uint q = mod3[r+2];

We first require the intersection of the ray and the plane of the tri-
angle, with the ray direction projected onto the triangle normal:

11 ///////////////////////////

12 // Ray/plane intersection

13

14 int64 denom = omega[r] + ((omega[p]*np) >> 31) +

15 ((omega[q]*nq) >> 31);

16 if (abs(denom) < epsilon)

17 return false;

18

19 int64 numer = origin[r] + ((origin[p]*np) >> 31) +

20 ((origin[q]*nq) >> 31);

21 int64 tval = numer / denom;

22 if (tval > INT_MAX || tval < -INT_MAX)

23 return false;

Note that shifting right by 31 bits (lines 14-15 and 19-20) brings the
temporary 64-bit results back into the fixed-point domain.

If the intersection occurs within the valid interval, the p and q com-
ponents of the hit point relative to the vertex v0 are determined:

24 /////////////////////////////////////////

25 // Compute p, q components of hit point

26

27 int64 kp = origin[p] + ((tval*omega[p]) >> 31) - pp;

28 int64 kq = origin[q] + ((tval*omega[q]) >> 31) - pq;

Here, too, the right shift brings the temporary 64-bit results back
into the fixed-point range.

Now, the barycentric coordinates of the hit point are computed:

29 ////////////////////////////////////

30 // Compute barycentric coordinates

31

32 int64 u = int64(e1p)*kq - int64(e1q)*kp;

33 if (u < 0)

34 return false;

35

36 int64 v = int64(e2q)*kp - int64(e2p)*kq;

37 if (v < 0)

38 return false;

39

40 if (((u + v) >> E) > (int64(1) << 31))

41 return false;



Recall that, in the integer representation, the triangle edge com-
ponents are biased: a right shift by the edge shift E (line 40) is
necessary to compensate for the bias applied during preprocessing.

Finally, if the barycentric coordinates are required for shading, u
and v can be converted to the fixed-point space and packaged for
return to the caller before reporting a valid intersection:

42 ///////////////////////////////////////////////

43 // Prepare barycentric coordinates for return

44

45 beta = (u >> E);

46 gamma = (v >> E);

47 alpha = (INT_MAX - beta - gamma);

This implementation is suitable for any platform with a standard
C++ compiler and support for 64-bit integral data types.

2.5 Shading

In addition to traversal and intersection, we implement an integer-
only shading process: ideal Lambertian, Blinn-Phong metal, and
dielectric material models are supported by the Whitted-style re-
cursive ray tracer provided online.

In general, integer-only shading follows its floating-point counter-
part closely, with a few exceptions necessary to avoid overflow and
maintain precision. We thus utilize a FixedPoint data type to
simplify the implementation and improve readability:

0 ///////////////////////////////////////////////

1 // Type definitions for a general fixed-point

2 // representation

3

4 template<int N>

5 class FixedPoint;

6

7 typedef FixedPoint<31> fp31;

8 typedef FixedPoint<16> fp16;

This class template overloads the basic arithmetic operations for a
fixed-point representation with the radix point to the right of bit N,
and is used throughout shading to shield the programmer from the
details of the fixed-point representation wherever possible.

Reflection direction. The computation of the mirror reflection
direction, V − 2(N · V )N , necessitates scaling the ray direction
and the shading normal to avoid overflow:

0 ////////////////////////////////////////

1 // Compute mirror reflection direction

2

3 fp31 cosTheta = dot(n, dir);

4

5 rdir[0] = ((dir[0] >> 2) - 2*(cosTheta*(n[0] >> 2)))

6 << 2;

7 rdir[1] = ((dir[1] >> 2) - 2*(cosTheta*(n[1] >> 2)))

8 << 2;

9 rdir[2] = ((dir[2] >> 2) - 2*(cosTheta*(n[2] >> 2)))

10 << 2;

Note that the computation proceeds component-wise because scal-
ing N · V by two involves a value falling outside the range of the
31-bit fixed-point domain. Overloaded operators implement the op-
erations necessary to compute the mixed-type product 2(N · V )N ,
including the 64-bit promotions and subsequent shifts to move the
results back into the 31-bit fixed-point space.

Schlick’s approximation. We use Schlick’s approxima-
tion [Schlick 1993; Schlick 1994] to compute the Fresnel terms in
specular reflection, represented in the 31-bit fixed-point domain:

0 ////////////////////////////////////

1 // Compute Schlick’s approximation

2

3 fp31 k = fp31::One + cosTheta;

4 fp31 k2 = k*k;

5 fp31 k4 = k2*k2;

6 fp31 k5 = k4*k;

7

8 RGB R = R0 + (1 - R0)*(k5 >> 15);

Recall that RGB colors exist in a 16-bit fixed-point space, so the
approximation must be shifted right 15 bits in order to move the
value into the range of the 16-bit fixed-point representation (line 8).

Blinn-Phong reflection. We implement the Blinn-Phong
model [Blinn 1977] for specular highlights. In this model, the
halfway vector is computed by subtracting the ray direction from
the direction to the light source, which requires scaling both vectors
to avoid overflow:

0 //////////////////////////////////////

1 // Compute Blinn-Phong specular term

3

4 Vector H = ((ldir >> 2) - (dir >> 2)).normal();

5 fp31 Hn = dot(H, n);

6 if (Hn > 0)

7 {

8 fp31 scale = pow(Hn, exp);

9 light += lcolor*(scale >> 15);

10 }

The term is calculated by raising H ·N to a power specified by the
object’s material properties using an integer power function [War-
ren 2003]. The result is shifted right 15 bits to move the value into
the 16-bit fixed-point color space, which then modulates the inci-
dent light to compute the specular contribution.

Index of refraction. Dielectric materials, such as glass, diamond,
and so forth, are specified in part by an index of refraction, or the
ratio of the material’s optical density relative to vacuum. To prop-
erly account for light both entering and exiting dielectric objects, an
implementation requires both this ratio and its reciprocal—values
greater than one as well as less than one. To strike a balance, these
values are encoded in the 16-bit fixed-point domain. For example,
the relevant values for crown glass can be computed as follows:

double ETA = 1.5;

fp16 eta = fp16(ETA);

fp16 invEta = fp16(1./ETA);

Clearly this choice sacrifices some precision in the encoded values,
but it greatly simplifies the dielectric shader implementation by ab-
stracting the details of the fixed-point representation.

3 Examples

To demonstrate the integer ray tracing techniques described here,
we render the scenes depicted in Figure 1. Table 2 summarizes
the pertinent characteristics of these scenes, which represent a wide
range of geometric complexity, particularly with regard to the rel-
ative scale of the triangles. In the kalabsha scene, for example,
more than 1

3
of the triangles are degenerate in the integer domain,

and most scenes contain at least a few such triangles. The actual
number of triangles rendered is thus some percentage of the total
number of triangles in the original scene.

Performance. To characterize the impact of an integer-only envi-
ronment on performance, we render each scene using the template-
based integer/floating-point ray tracer available online.

Figure 3 shows the results when rendering the scenes on a 3.06 GHz
Intel Core2 Duo processor according to the following rendering
configuration:



triangles
scene degen actual % orig

conference 0 251064 100.0
kalabsha 732224 1391777 65.5
poolhall 2 83843 100.0
rtrt 2909 285805 99.0
sponza 20 76063 100.0

Table 2: Test scenes. These scenes represent a wide range of geo-
metric complexity, particularly with regard to the ratio between the
minimum and maximum triangle edge lengths within the scene.

parameter value

image resolution 1024 × 1024
BVH leaf threshold 1
# of samples per pixel 1
# of shadow rays 1 per source
maximum ray depth 10
reciprocal dir: C bits only C = 12
reciprocal dir: C/D bits C = 15, D = 9

The refined reciprocal direction computation described above
(D bits) results in a penalty of less than 2% relative to Hanika’s
original method (C bits). However, both versions of the integer ray
tracer significantly underperform the floating-point renderer: per-
formance differs by a factor of 2×–5× on the test machine, indi-
cating that modern general-purpose CPUs are heavily optimized for
floating-point operations. If performance is of concern, the use of
integer ray tracing is not recommended on platforms that support
IEEE 754 data types.

Image quality. To characterize the image quality realized with
integer ray tracing, we conduct a simple comparison of the integer
results to those produced by the floating-point renderer. In partic-
ular, ImageMagick [ImageMagick 2009] is used to generate differ-
ence images between the integer and floating-point results with the
following command:

convert <float_image> <integer_image> \

-compose difference \

-composite \

-separate \

-background black \

-compose plus \

-flatten \

<difference_image>

This command generates a gray scale image in which brighter pix-
els depict greater differences between the corresponding pixels.
Therefore, regions with little difference appear black, whereas re-
gions exhibiting some artifact are various shades of gray to white.

The top panel of Figure 4 illustrates the results with the kalabsha
scene. Although some differences arise due to quantization errors in
the integer shading process, we attribute the overwhelming majority
of the visible differences to errors in ray/bounding box intersection:
a dramatic reduction in the number of differences ensues if either
the bounds of leaf nodes are artificially increased or the refinement
for improved accuracy in ray/bounding box intersection is used.

As such, we examine the artifacts arising from the two reciprocal
direction computation techniques more carefully. In particular, we
use a simple counting strategy to quantify the visible differences:
for each difference image, we count the number of pixels above
a given threshold as a very rough approximation to more sophisti-
cated, perceptually-based difference metrics [Daly 1993; Ramasub-
ramanian et al. 1999].

IEEE integer
scene 754 C bits v. 754 D bits v. 754

conference 2.60 11.57 4.45× 11.75 4.52×
kalabsha 5.12 21.95 4.29× 22.27 4.35×
poolhall 5.97 25.32 4.24× 25.34 4.25×
rtrt 5.22 10.04 1.92× 10.18 1.95×
sponza 3.71 16.48 4.44× 16.73 4.51×

Figure 3: Rendering time in seconds. Performance of the integer
ray tracer relative to the floating-point renderer, both with and with-
out the reciprocal direction refinement. Modern general-purpose
CPUs are heavily optimized for floating-point performance: the
integer renderer performs about 2×–5× slower than the floating-
point renderer on the same hardware.

The results are illustrated in the bottom panel of Figure 4. For
these data, we use a threshold of 25%: if the difference between
the integer and floating-point images is greater than 25% of the
maximum—that is, an absolute difference of greater than 64 units
in the 8-bit gray scale pixel values—the artifact is counted. Note
that the refined computation reduces the number of differences in
all scenes, in some cases quite significantly. We suggest that the
modest impact on performance imposed by the D bits optimization
is thus a favorable tradeoff.

4 Discussion

The primary utility of integer ray tracing is in environments without
hardware support for IEEE 754 floating-point types. As the results
in the previous section illustrate, modern general-purpose CPUs are
heavily optimized for floating-point operations, so the use of inte-
ger ray tracing is not recommended for these platforms when per-
formance is of concern.

Some other issues in integer ray tracing also deserve consideration:

• Relative scale. Scenes in which the geometry occupies a large
spatial extent relative to the minimum triangle edge length
can be problematic. An extreme example would be a scene
that models everyday objects, lit by the sun positioned at a
physically accurate distance. Capturing that scale will leave
very few bits to represent the objects within the scene. The
inability of integers to represent as vast a range of values as
a floating-point representation limits the type of scenes that
can be rendered with reasonable accuracy using integer ray
tracing.

• Epsilon. With integer ray tracing, the error margin typi-
cally used to avoid the self-intersection problem for secondary
rays [Woo et al. 1996] is no longer scene-dependent: all
scenes are scaled into the same range and vertices are fixed
to a raster grid. Hanika [Hanika 2007] shows that ǫ = 2 suf-
fices when shifting the origins of secondary rays along the



floating-point integer difference

C bits

D bits

Figure 4: Visible differences. Although some differences arise
due to color quantization in the integer shading process, the over-
whelming majority of the visible differences arise due to errors in
ray/bounding box intersection. However, using the refinement for
improved accuracy in ray/bounding box intersection significantly
reduces the number of visible artifacts in the integer images.

normal direction. However, we find ǫ = 6 is required in our
examples. The difference arises because of precision lost dur-
ing shading. In particular, we often scale vectors to avoid
overflow when computing the required values, and these bits
cannot be recovered. Nevertheless, the value remains inde-
pendent of the geometry and need not be adjusted from one
scene to the next.

• Seams. When rendering images of the example scenes from
various viewpoints, occasionally artifacts along the seam be-
tween two axis-aligned triangles appear. For example, when
rendering the conference scene, seams along an edge of the
door frame appear: rays cast toward that edge simply miss the
geometry altogether. We attribute the issue to imprecision in
ray/bounding box intersection: as before, if either the bounds
of leaf nodes are artificially increased or the refinement for
improved accuracy in ray/bounding box intersection is used,
the visible differences are reduced significantly.

• BVH depth. Likewise, the leaf creation threshold used in
the BVH construction process also impacts the relative im-
age quality. For example, when using C bits with the con-
ference scene, 497 differences are found when using a leaf
creation threshold of one; when that threshold is increased to
64, only 111 of the differences remain. In general, we have
found that increasing the BVH leaf threshold leads to fewer

visible differences but increases rendering times. However,
shallow BVHs can be beneficial in packet-based ray tracing
techniques [Reshetov 2007; Dammertz et al. 2008], so this
observation may be of value in this context.

We have explored the problem of integer ray tracing, specifically
targeting platforms that lack hardware support for the IEEE 754
floating-point standard. It is our hope that these integer-only tech-
niques will make ray tracing accessible to a wider range of useful,
but non-traditional, processing environments.
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