Recovering Correct Reconstructions from Indistinguishable Geometry Jared Heinly, Enrique Dunn, Jan-Michael Frahm University of North Carolina at Chapel Hill

Contributions

- Method is a post-process step to existing structure-frommotion (SfM) pipelines
- Efficiently split reconstruction into consistent sub-models
- Recover correct reconstruction by merging sub-models

Input

Image Set

Match Graph

3D Model

Results

Dataset Name	\# Cameras	\# Points	Time	Time [1]
San Marco (using iconics)	3372	410592	3.0 m	5.6 m
Brandenburg Gate	50	8046	18 s	12 s
Arc de Triomphe	192	32708	1.7 m	2.7 m
Giotto's Campanile	211	52620	4.4 m	22.5 m

[1] Heinly, Dunn, Frahm, "Correcting for Duplicate Scene Structure in Sparse 3D Reconstruction", ECCV 2014

Local Clustering Coefficient

Camera
Graph

3D Point Co-occurrence Graph

- Construct point co-occurrence graph
- Take union of co-occurrence entries for 3D points that are spatial neighbors in 2D images
- Compute local clustering coefficient (lcc) for each point
- Measures connectivity of a vertex to its neighbors
$l c c=\frac{2(\# \text { of edges between neighbors })}{(\# \text { of neighbors })(\# \text { of neighbors }-1)}$

Model Splitting

- Iteratively remove points with lowest lcc from co-occurrence graph, and discard an edge from the camera graph when all of its points have been removed
- Stop removing points when the camera graph no longer forms a single connected component
- Analyze correctness of split in the camera graph using overlapping correspondences

- If non-negligible overlap, identify indistinguishable points
- Expand indistinguishable point set to inliers and nearby 2D image points
- Re-split reconstruction using updated indistinguishable point set

Model Merging

- Find camera pairs from match graph that were not used in final 3D model
- Propose similarity transform to align sub-models by sampling unused camera pairs

